
Visual Comput (2008) 24: 659–667
DOI 10.1007/s00371-008-0246-8 O R I G I N A L A R T I C L E

Hanyoung Jang
JungHyun Han

Fast collision detection using the A-buffer

Published online: 17 May 2008
© Springer-Verlag 2008

H. Jang · J. Han (�)
Game Research Center, Korea University,
Seoul, Korea
jhan@korea.ac.kr

Abstract This paper presents a novel
and fast image-space collision de-
tection algorithm with the A-buffer,
where the GPU computes the poten-
tially colliding sets (PCSs), and the
CPU performs the standard triangle
intersection test. When the bounding
boxes of two objects intersect, the
intersection is passed to the GPU. The
object surfaces in the intersection are
rendered into the A-buffer. Rendering
into the A-buffer is up to eight-times
faster than the ordinary approaches.
Then, PCSs are computed by com-
paring the depth values of each texel
of the A-buffer. A PCS consists of
only two triangles. The PCSs are
read back to the CPU, and the CPU
computes the intersection points
between the triangles. The proposed
algorithm runs extremely fast, does

not require any preprocessing, can
handle dynamic objects including
deformable and fracturing models,
and can compute self-collisions. Such
versatility and performance gain of
the proposed algorithm prove its
usefulness in real-time applications
such as 3D games.

Keywords Real-time collision
detection · A-buffer · Deformable
object

1 Introduction

Collision detection refers to the process of determining if
two objects are intersecting, and is a fundamental problem
in many applications such as 3D games. It is a very time-
consuming step in most physics simulations, and therefore
is a primary target for optimization to achieve real-time
performance. Numerous algorithms for collision detec-
tion have been proposed, and they are often classified into
object-space algorithms and image-space algorithms.

For the last decade, the computational power of graph-
ics hardware has made enormous leaps, in both speed and
functionality, and the APIs, Direct3D and OpenGL, have
accordingly evolved. Especially, DirectX 10 [3], as an API
for the 4th-generation GPU, provides increased generality

and flexibility through the techniques of geometry shader
stage, stream output stage, etc.

This paper proposes an image-space collision detection
algorithm, the key techniques of which are implemented in
DirectX 10. The proposed algorithm has many strengths.
It can handle both closed and open objects, and can take as
input various dynamic objects including deformable and
fracturing models. It does not require any preprocessing,
and is simple enough to be fully hardware-accelerated.
Unlike many of the image-space collision detection algo-
rithms, the one proposed in this paper rarely suffers from
readback and rendering overheads. Finally, and most im-
portantly, it shows superior performance. The proposed
algorithm is attractive for real-time applications such as
3D games.

660 H. Jang, J. Han

The structure of this paper is as follows. Section 2 re-
views the related works, discusses their advantages and
disadvantages in depth, and derives the raison d’être of
the approach proposed in this paper. Section 3 gives the
overview of the proposed approach, and Sects. 4 and 5
present the main algorithms. Section 6 discusses several
optimization techniques. Section 7 presents the test re-
sults, and finally Sect. 8 concludes the paper.

2 Related work

The collision detection algorithms based on triangu-
lated models can be classified into two broad categor-
ies. One is the object-space approach and the other is
the image-space approach. In the object-space approach,
most of the proposed algorithms are accelerated by uti-
lizing spatial data structures, i.e. the objects are hierar-
chically organized using the bounding volumes such as
bounding spheres [16, 23], axis-aligned bounding boxes
(AABBs) [26, 28], oriented bounding boxes [4], discrete
orientation polytopes [18], and quantized orientation slabs
with primary orientations [11]. These data structures are
used to cull away portions of an object that are not in close
proximity. However, the spatial data structures do not help
a lot in identifying the closest features between pairs of
objects in close proximity, especially for dynamic environ-
ments and deformable objects, where both of the hierarchy
and bounding volumes should be updated. Some algo-
rithms proposed for handling deformable objects either
can handle simple objects only or have been designed for
a limited class of objects such as cloth [20]. Another class
of algorithms in the object-space approach includes the
spatial hashing [25] and spatial subdivision methods [9].

It is worth analyzing the object-space algorithm,
named steaming AABB, found in the work of Zhang and
Kim [29]. Using the leaf nodes of a mesh’s AABB tree,
the 1D stream of AABBs is constructed. In the stream,
an AABB comprises a set of triangles, and is represented
by min/max vertices. Then, all possible pairwise combin-
ations from two AABB streams are examined for possible
overlap. The Boolean results of the overlap test constitute
the potentially colliding sets (PCSs), and are read back to
the CPU for a primitive-level intersection test. As the in-
put mesh models deform, the AABB streams are updated.
The proposed algorithm runs quite fast and is accurate.
However, it is not suitable for fracturing objects. When the
triangles in an AABB fall apart due to fracture, the AABB
stream often has to be restructured. Such restructuring
hampers real-time performance. Without restructuring, the
AABB would become unacceptably large, and the num-
ber of PCSs is accordingly increased. As a result, the
readback overhead is increased, and the CPU is burdened
with extensive computation, i.e. real-time performance is
hampered.

The image-space approach typically measures the
volumetric ranges of objects along the viewing direction,
and then compares the ranges to detect collision. Since
the seminal work of Shinya and Forgue [24], various algo-
rithms for the image-space approach have been proposed,
attempting to maximally utilize the powerful rasteriza-
tion capability of the GPUs [1, 14, 22, 27]. Recent efforts
in the image-space approach include the works of Hei-
delberger et al. [12, 13]. They proposed to compute the
layered depth images (LDIs), one for each object, where
an LDI stores entry and leaving points of parallel viewing
rays with respect to an object. Then, collision is detected
through Boolean intersection on LDIs. Those approaches
can handle concave objects. LDI generation also requires
a considerable amount of time for objects with complex
geometry, due to the rendering and readback overhead.
Jang et al. [17] proposed an algorithm, named alternate
surface peeling, where the object surfaces are rendered
layer by layer, and the depth disparities among the sur-
faces are analyzed to compute the PCSs.

In general, the advantages of the image-space approach
can be listed as follows. Unlike the object-space approach
which requires non-trivial preprocessing for computing
bounding volumes and their hierarchy, the image-space
approach rarely requires preprocessing. Partly due to the
absence of the preprocessing, the image-space approach
is easy to implement. It can also effectively handle de-
formable objects and dynamic environments. Moreover,
it usually employs the GPU which has been evolving at
a rate faster than Moore’s law, while the object-space ap-
proach usually performs the collision tests on the CPU.
Therefore, an efficiently designed algorithm can show su-
perior performance.

However, the image-space approach also reveals dis-
advantages. First of all, its effectiveness is limited by the
image-space resolution, and therefore the image-space ap-
proach often misses overlapping primitives. Therefore, it
is not suitable for applications requiring accurate collision
detection, but can be used for approximate collision de-
tection. An example application that can be satisfied with
such approximate collision detection is the 3D game.

Virtually all of the image-space algorithms proposed
so far perform collision tests using both the CPU and
GPU, and suffer from the limited bandwidth between
them, i.e. the readback problem. In the LDI-based al-
gorithm of Heidelberger et al. [12, 13], for example, the
CPU reads the LDIs from the GPU’s back buffers, and
then tests the LDIs for Boolean intersection. Because of
the limited bandwidth, the sampling resolution (LDI reso-
lution) is usually made low, 32 ×32 through 128 ×128.
Note that, however, the accuracy of the collision detec-
tion is governed by the LDI precision, and low reso-
lutions lead to inaccurate detection of collision for com-
plex objects.

As an effort to alleviate the readback problem, Govin-
daraju et al. [8] proposed an algorithm named CULLIDE.

Fast collision detection using the A-buffer 661

(There have been a few extensions of the original CUL-
LIDE algorithm [6, 7]. In this paper, we collectively call
all of them just ‘CULLIDE.’). The CULLIDE algorithm
tests the visibility of an object O with respect to a set S
of objects. A PCS is computed through a hardware vis-
ibility query, which checks if any part of O is occluded
by S. If not occluded, O does not collide with S, and
therefore is not included in the PCS. CULLIDE usually
partitions an object into a set of sub-objects at the prepro-
cessing stage, and the sub-object hierarchy is traversed for
the visibility query at run-time. The number of the sub-
objects determines the number of rendering calls. An ef-
ficient preprocessing technique for handling self-collision
using the CULLIDE algorithm, named chromatic decom-
position [5], has been suggested, but it also has limita-
tions. For example, the objects to be tested for collision
are limited to polygonal meshes with fixed connectivity.
For a fracturing model the topology of which may vary
frame by frame, the time-consuming preprocessing has to
be executed per each frame.

Like the works of CULLIDE in the image-space
approach and streaming AABB in the object-space ap-
proach, the proposed algorithm uses the GPU to compute
the PCSs. Unlike CULLIDE and streaming AABB, how-
ever, the proposed algorithm makes the GPU take the
major computation load off the CPU. As a result, each
PCS passed to the CPU is of the minimum size, i.e.
a pair of triangles. The computing capability of the 4th-
generation GPU makes the strategy quite attractive. In
addition, the proposed algorithm does not suffer from the
readback overhead problem, and can freely handle de-
formable and fracturing models. These are the distinctions
from CULLIDE and streaming AABB.

3 Overview of the approach

The algorithm proposed in this paper utilizes both the
CPU and GPU for collision detection, and the coordi-
nation between them is illustrated in Fig. 1. Each object
in the scene is associated with an axis-aligned bounding
box (AABB). If the AABBs of two objects O1 and O2
intersect, the intersection is passed to the GPU as a re-

Fig. 1. System architecture

Fig. 2. a Object AABBs and the ROI, b PCSs in the ROI

gion of interest (ROI). An example is shown in Fig. 2a.
Given an ROI, the GPU computes the potentially col-
liding sets (PCSs). A PCS is a pair of triangles, one
from O1 and the other from O2. Two PCSs are obtained
in Fig. 2b. Given such PCSs, the CPU performs the tra-
ditional triangle intersection test to obtain the intersection
points.

The coordination of CPU and GPU aims at both per-
formance and accuracy. The streaming processor is suit-
able for performing a simple operation with massive data,
and hence the GPU can prune away non-intersecting trian-
gles quickly. On the other hand, the collision information
provided by the CPU is in the triangle level accuracy, and
enables the collision response module to perform realistic
physical simulation.

The framework is similar to that of CULLIDE [8],
and also that of streaming AABB [29], in the sense that
PCSs are computed by the GPU and passed to the CPU.
However, the key feature that makes our algorithm dis-
tinguishable from CULLIDE and streaming AABB is that
a PCS consists of exactly two triangles while a PCS in
CULLIDE and streaming AABB comprises many trian-
gles. When a PCS consists of n triangles, we need O(n2)
triangle intersection tests. Note that, per PCS, the CPU in
our method performs just a single test for triangle inter-
section. Our strategy is to maximally utilize the computing
power of the GPU and pass the minimum-sized PCSs to
the CPU so as to reduce the CPU’s computational load.
The revolutionary growth of the GPU’s computing power
makes this strategy very attractive, as will be discussed
in Sect. 4.

In the framework of Fig. 1, the CPU’s tasks, i.e. AABB
overlap test and triangle intersection test, are quite obvi-
ous, and existing methods are adopted for them. The major
contributions of this paper are found in the GPU’s tasks,
surface buffering and PCS generation, which are discussed
in Sects. 4 and 5, respectively.

4 Surface buffering

In the rendering area, a few algorithms for saving multi-
layer depth images have been proposed [2, 19]. The al-

662 H. Jang, J. Han

Fig. 3. Surface rendering into the A-buffer

gorithms have adopted the so-called K-buffer which can
capture multiple layers in a single pass, using the stencil
routing method. Each pixel of the K-buffer stores a list
of fragments. Myers has presented an extension of the K-
buffer, named the A-buffer1 [21]. Currently, the A-buffer
captures up to eight fragments in a rendering pass, and is
supported by DirectX 10 only. The A-buffer can be easily
implemented, and is quite fast.

Figure 3 illustrates how the surfaces, in the ROI
of Fig. 2b, are rendered into the A-buffer. Orthographic
projection is used for rendering, and the ROI is set to its
view volume. Then, O1 is processed to make the light
fragments in the A-buffer, as shown in Fig. 3. Next, O2 is
processed and the dark fragments are accumulated into the
A-buffer. Note that such a multi-layer depth image is cre-
ated in a single pass of rendering. As the A-buffer captures
up to eight fragments in a pass, the rendering process is
up to eight times faster than those of the other GPU-based
image-space algorithms.

As illustrated at the bottom of Fig. 3, a fragment in
the A-buffer contains two values for surface information: a
depth value in the red channel and triangle ID in the green
channel. The triangle ID indicates the owner triangle of
the fragment, and is allocated using the SV_PrimitiveID
semantic in DirectX 10 [3]. To distinguish between the
fragments from O1 and those from O2, a bit in the triangle
ID is used as a flag.

In the image-space algorithm described above, more
accuracy can be obtained if we increase the A-buffer size
because the surfaces in the ROI are then sampled more
densely. This issue will be discussed in Sect. 7.

1 The K-buffer is often taken as a hazardous operation, because it uses
the render target texture as a read-modify-write texture and the GPUs pro-
cess multiple fragments at the same time. The A-buffer is a non-hazardous
version of the K-buffer.

Fig. 4. PCS generation using the distance threshold

5 PCS Generation

In order to compute PCSs, a simple test is invoked for
each pixel of the A-buffer. Out of the fragment list, one
from O1, named f1, and the other from O2, named f2,
are selected. If the distance d between f1 and f2 is less
than the threshold ε, the triangle IDs are retrieved from the
fragments, and then passed to the CPU as a PCS. In Fig. 4,
the fragment pairs (f b

1 , f b
2) and (f c

1 , f c
2) constitute the

PCSs.
The PCSs are initially recorded in a render target tex-

ture. The PCSs should be read back to the main mem-
ory so that the CPU can compute the intersection points,
c1 and c2, in Fig. 4. The readback operation is expensive
on commodity graphics hardware, and therefore readback
of the entire texture significantly degrades the system per-
formance. Note that, in general, only a small fraction of
the texels in the render target texture contains the informa-
tion of PCSs while the remaining texels contain no infor-
mation at all. It is desirable to extract only the PCSs. We
call the process stream reduction, which is a special algo-
rithm for removing unnecessary data elements or changing
the sequence of the elements.

Stream reduction is a fundamental issue in many
GPGPU applications, and a few works on it have been
reported [10, 15]. Fortunately, the geometry shader in
DirectX 10 enables us to trivially remove unwanted elem-
ents from a stream of input. The reduced elements can also
be written to a memory resource which can be copied to
a staging resource for readback to the CPU.

Fig. 5. Surface buffering for complicated collisions

Fast collision detection using the A-buffer 663

Fig. 6. A-buffer overflow

In DirectX 10 with shader model 4.0, we have two
rendering passes for PCS generation. The first pass com-
putes the PCSs in the pixel shader, and the second pass
performs stream reduction in the geometry shader. Note
that, in DirectX 10.1 with shader model 4.1, those can
be performed in a single pass with the vertex shader and
geometry shader, because the vertex shader can access
multi-sample textures.

So far, we have used a simple example and discussed
the skeleton of the proposed algorithm. Figure 5 shows
a more complicated case, where more than two fragments
are accumulated in a pixel position of the A-buffer. At the
4th pixel, five fragments are accumulated, three from O1
and two from O2. In this case, all possible fragment pairs
from O1 and O2, six pairs in the 4th pixel, are checked in
the PCS generation phase.

Recall that the contemporary A-buffer captures up to
eight fragments in a rendering pass. As shown in Fig. 6,
however, more than eight fragments may be created for
a pixel position in the A-buffer. Such an overflow can
be handled by creating multiple A-buffers. Fortunately,
our experiment reports that eight fragments per pixel are
enough for almost all cases, i.e. a single A-buffering is
enough.

6 Optimization techniques

6.1 A-buffer partitioning

Collision detection among more than two objects can be
handled by reformulating it into multiple instances of col-
lision detection between two objects, as shown in Fig. 7.
Such multiple instances can be processed simultaneously
by partitioning the A-buffer. In Fig. 7, each ROI is scaled
and translated to fit to a cell of the A-buffer. To pre-
vent an ROI from affecting the other cells, the scissor
test is enabled for each cell. A-buffer partitioning signifi-
cantly enhances the overall system performance because
the overhead of context switching is reduced2.

2 A-buffer partitioning reduces the number of the batch calls for initial-
ization. The A-buffer has eight sub-pixels in a pixel, and each sub-pixel
has a different stencil value. To assign the stencil values to all sub-pixels,
a call for the stencil buffer initialization and subsequent seven renderings
are needed.

Fig. 7. Partitioning of the A-buffer into a set of cells

Fig. 8. Multiple instances of a single PCS are often produced

6.2 PCS coherence

The neighboring texels in the render target texture may
often contain the same PCS information. In Fig. 8, seven
PCSs are computed between O1 and O2, but among them,
for example, four PCSs are identical, i.e. four instances
of (t1, t3) indicate that the triangles t1 of O1 and t3
of O2 would collide. Note that the four PCSs appear con-
tinuously. This is called PCS coherence. Our algorithm
eliminates such duplicate PCSs through a small effort of
checking the neighbors of a PCS in the CPU, and avoids
unnecessary tests for triangle intersection.

7 Experimental result and analysis

The proposed algorithm has been implemented in Dir-
ectX 10 with shader model 4.0 on a PC with a 2.4 GHz
Intel Core2 CPU and 2 GB memory. The PC is equipped
with a NVIDIA GeForce 8800GTS GPU which has
a 500 MHz core, 640 MB memory, and PCI-Express
1.1×16 interface. Various functionalities of DirectX 10
are exploited, such as multisample antialiasing (MSAA)
texture for A-buffer and SV_Primitive semantic for PCS
generation.

7.1 Performance analysis

Figure 9 shows a series of screen shots for a scene of mul-
tiple collisions. Table 1 shows the performance statistics
of the test in Fig. 9. The GPU time is spent for A-buffer
initialization, surface buffering, and PCS generation. The

664 H. Jang, J. Han

Fig. 9a–d. A scene of 11 cows (each with 3.3 K triangles) falling
on the ground (of 1.9 K triangles)

Table 1. Performance evaluations for Fig. 9 (times in ms)

Fig. 9 PCSs Collisions GPU CPU Total

a 58 16 0.98 0.32 1.30
b 238 52 2.18 0.61 2.79
c 976 132 2.22 0.75 2.97
d 1688 197 2.35 0.86 3.21

CPU time is spent for the AABB overlap test, readback,
and triangle intersection test. The total processing time is
proportional to the model complexity and the number of
PCSs.

Figure 10 shows a series of screen-shots for a scene
with a variety of deforming objects. The performance
of the A-buffer algorithm is compared with that of
CULLIDE. As discussed in Sect. 2, CULLIDE requires
off-line preprocessing for defining sub-objects. In the
experiments3, an object is partitioned into a set of sub-
objects, each of which contains 15 triangles. In Fig. 11a,
CULLIDE shows an outstanding performance at the initial
stage, which corresponds to the scene in Fig. 10a, with few
collisions. When multiple collisions start to occur, how-
ever, CULLIDE’s performance degrades significantly. It
is caused by both the CPU and GPU. Recall that a PCS
passed to the CPU is a set of triangles, not a pair of trian-
gles. Given n triangles in a PCS, n2 triangle intersection

3 The visibility test is done three times along the principal axes. For the
purpose of optimization, rendering is done in the partitioned areas of the
render target texture, which is similar to the A-buffer partitioning in our
approach.

Fig. 10a–d. Multiple deforming objects (56 K triangles in total):
a torus (of 840 triangles), two pieces of cloth (each with 1.2 K
triangles), 16 torus-knots (each with 1.3 K triangles), 24 spheres
(each with 320 triangles), 21 chamfer-boxes (each with 800 tri-
angles), and 19 capsules (each with 360 triangles)

tests should be performed. Figure 11b illustrates the per-
formance gap between A-buffer and CULLIDE in the
triangle intersection test. In PCS computation on the GPU
side, the A-buffer algorithm also shows a better perform-
ance than CULLIDE because, in principle, a rendering call

Fig. 11a,b. Performance comparisons: a total time, b time for trian-
gle intersection test

Fast collision detection using the A-buffer 665

is needed for an object in the A-buffer algorithm while
multiple calls are needed in CULLIDE due to the exis-
tence of sub-objects.

Figure 12 shows a test with deforming and fracturing
objects, where the cloth patch is being torn by the falling
sharp objects. When the cloth is torn, its mesh connectivity
is changing. Further, new triangles are dynamically added
in the areas being split, to achieve more natural simula-
tion. The collision detection algorithm proposed in this
paper does not require any extra time for handling such de-
forming and fracturing objects. In contrast, handling this
kind of real-time simulation is not possible in the ordinary
bounding volume hierarchy methods including streaming
AABB.

Recall that, in the proposed approach, the A-buffer
saves all fragments of objects in a pixel position. It makes
the proposed algorithm extend directly to detection of
self-collisions. Figure 13 shows a simple example of self-
collision detection with a cloth patch of 22×22 vertices.
This simulation is performed within 0.5 ms.

7.2 Accuracy

A well-known problem of the image-space collision de-
tection algorithms is that its accuracy is limited by the
image-space resolution and the viewing direction. As a re-
sult, an image-space algorithm often misses overlapping
primitives. Suppose that q is the number of colliding tri-
angle pairs and p is that computed by a collision detec-

Fig. 12a–d. Collision detection among deforming and fracturing
models: a cloth patch (of 1.6 K triangles) and 40 sharp objects
(each with 2.1 K triangles)

Fig. 13. Self-collision detection: The red-colored triangles repre-
sent collisions

Fig. 14. Hit ratio curve for Fig. 10

Fig. 15. Collision between bunny (2.7 K triangles) and dragon
(2.9 K triangles)

tion algorithm. Then, p/q is defined to be the hit ratio,
and 1− p/q is the miss ratio. Figure 14 shows the hit
ratio curve for the scene of Fig. 10, where a 64 ×64 size
A-buffer is assigned per ROI4.

Figure 15 shows a worst-case example, where the
bunny and dragon are deeply interpenetrated and there-
fore the ROI size becomes large. If a fixed-size A-buffer is
assigned to an ROI independently of the ROI size, the pre-
cision of sampling becomes lower as the ROI grows. With
a 64×64 size A-buffer, 307 pairs of triangles actually col-
lide, but our algorithm detects 134 pairs out of 928 PCSs,
i.e. the miss ratio is about 56%. An obvious solution to this
problem is to enlarge the size of the A-buffer.

Figure 16 shows the graphs of the miss ratio and colli-
sion detection time, as functions of the A-buffer size. As

4 For the same scene, CULLIDE achieves a higher hit ratio, about 95% on
average, as it is hard for the visibility test of CULLIDE to miss collid-
ing sub-objects. Recall, however, that CULLIDE requires expensive CPU
computation, i.e. n2 triangle intersection tests, discussed in Sect. 7.1.

666 H. Jang, J. Han

Fig. 16. The graphs of the miss ratio and the collision detection
time imply the trade-off between accuracy and efficiency

the A-buffer size increases, the miss ratio drops rapidly.
For example, with a 128 ×128 size A-buffer, 221 collid-
ing pairs are obtained, and the miss ratio falls under 30%.
As the A-buffer size increases, however, the collision de-
tection time also increases though the increase is gradual.
This is because both the A-buffering rendering cost and
the number of PCSs increase.

In actuality, the graphs in Fig. 16 show the trade-
off between accuracy and efficiency. Depending on the
requirements of the applications at hand, the most ap-
propriate size of A-buffer can be determined. For ex-
ample, the miss ratios over 50% would be admissible in
3D games. This is because game players are generous
in moderate inaccuracy if real-time performance is guar-
anteed. In such a case, the A-buffer size can be made
small.

A-buffer partitioning brings us a useful tool for accur-
acy control, i.e. the precision of the collision detection can
be made proportional to the degree of the user’s visual per-
ception. Suppose that you have two ROIs in a scene: one is

closer to the viewpoint and the other is located far. Then, it
is a good strategy to assign a small cell of the A-buffer to
the far ROI, and a large cell to the closer one. Even though
the far ROI leads to fairly inaccurate collision detection
and response, the user may not be able to perceive it.

8 Conclusion

This paper presented an efficient image-space algorithm
for real-time collision detection. In the current implemen-
tation, shader programs compute the PCSs, and the CPU
performs the primitive-level intersection test. Thanks to
the computing power and various functionalities of the
contemporary GPU, the algorithm can handle a variety
of dynamic objects including fracturing meshes, and per-
form fast self-collision detection. This method rarely suf-
fers from both rendering and readback overheads, and in
the near future the performance will be upgraded by Di-
rectX 10.1 and PCI-Express 2.0. The experimental results
show the feasibility of the shader-based collision detection
and its performance gain in real-time applications such as
3D games.

The proposed algorithm also has disadvantages. It
works in a synchronous mode between CPU and GPU,
i.e. the CPU waits until the GPU computes the PCSs. The
problem of missing collisions for complex objects has to
be resolved. The proposed algorithms are being extended
to overcome these disadvantages.

Acknowledgement This research was supported by MKE, Korea
under ITRC IITA-2008-(C1090-0801-0046), and also by grant No.
R01-2006-000-11297-0 from the Basic Research Program of the
Korea Science & Engineering Foundation.

References
1. Baciu, G., Wong, S.K., Sun, H.: RECODE:

An image-based collision detection
algorithm. J. Vis. Comput. Animation
10(4), 181–192 (1999)

2. Bavoil, L., Callahan, S.P., Lefohn, A.,
Comba, J.L.D., Silva, C.T.: Multi-fragment
effects on the gpu using the k-buffer. In:
I3D ’07: Proceedings of the 2007
Symposium on Interactive 3D Graphics and
Games, pp. 97–104. ACM, New York, NY
(2007)

3. Blythe, D.: The direct3d 10 system. ACM
Trans. Graph. 25(3), 724–734 (2006)

4. Gottschalk, S., Lin, M.C., Manocha, D.:
OBBTree: A hierarchical structure for rapid
interference detection. Computer Graphics
(SIGGRAPH ’96 Proceedings) 30, 171–180
(1996)

5. Govindaraju, N.K., Knott, D., Jain, N.,
Kabul, I., Tamstorf, R., Gayle, R., Lin,
M.C., Manocha, D.: Interactive collision

detection between deformable models using
chromatic decomposition. ACM Trans.
Graph. 24(3), 991–999 (2005)

6. Govindaraju, N.K., Lin, M.C., Manocha,
D.: Fast and reliable collision culling using
graphics hardware. In: VRST ’04: Proc. of
ACM Symposium on Virtual Reality
Software and Technology, pp. 2–9. ACM,
New York, NY (2004)

7. Govindaraju, N.K., Lin, M.C., Manocha,
D.: Quick-CULLIDE: Fast inter- and
intra-object collision culling using graphics
hardware. In: VR ’05: Proc. of IEEE
Virtual Reality 2005, pp. 59–66. IEEE
Computer Society, Washington, DC (2005)

8. Govindaraju, N.K., Redon, S., Lin, M.C.,
Manocha, D.: CULLIDE: Interactive
collision detection between complex
models in large environments using
graphics hardware. In: HWWS ’03: Proc.
of ACM SIGGRAPH/Eurographics

Conference on Graphics Hardware,
pp. 25–32. Eurographics Association,
Aire-la-Ville, Switzerland (2003)

9. Grand, S.L.: Broad-phase collision
detection with CUDA. In: Nguyen, H. (ed.)
GPU Gems 3, chap. 32, pp. 697–722.
Addison-Wesley (2007)

10. Harris, M., Sengupta, S., Owens, J.D.:
Parallel prefix sum (scan) with CUDA. In:
Nguyen, H. (ed.) GPU Gems 3, chap. 39,
pp. 851–876. Addison-Wesley (2007)

11. He, T.: Fast collision detection using
QuOSPO trees. In: I3D ’99: Proc. of the
1999 Symposium on Interactive 3D
Graphics, pp. 55–62. ACM, New York, NY
(1999)

12. Heidelberger, B., Teschner, M., Gross, M.:
Realtime volumetric intersections of
deforming objects. In: Ertl, T. (ed.)
VMV ’03: Proc. of the 2003 Vision,
Modeling, and Visualization Conference,

Fast collision detection using the A-buffer 667

pp. 461–468. Aka GmbH, München
(2003)

13. Heidelberger, B., Teschner, M., Gross, M.:
Detection of collisions and self-collisions
using image-space techniques. J. Winter
School Comput. Graph. 12(3), 145–152
(2004)

14. Hoff, K.E., Zaferakis, A., Lin, M.C.,
Manocha, D.: Fast 3D geometric proximity
queries between rigid and deformable
models using graphics hardware
acceleration. Tech. Rep. TR02–004,
Department of Computer Science,
University of North Carolina (2002)

15. Horn, D.: Stream reduction operations for
gpgpu applications. In: Pharr, M. (ed.)
GPU Gems 2, chap. 36, pp. 573–589.
Addison-Wesley (2005)

16. Hubbard, P.M.: Interactive collision
detection. In: Proc. of IEEE Symposium on
Research Frontiers in Virtual Reality 1993,
pp. 24–32. IEEE Computer Society, San
Jose, CA (1993)

17. Jang, H., Jeong, T., Han, J.: Image-space
collision detection through alternate surface
peeling. In: ISVC ’07: Proc. of
International Symposium on Visual
Computing. Lect. Note Comput. Sci.,
vol. 4841, pp. 66–75. Springer (2007)

18. Klosowski, J.T., Held, M., Mitchell, J.S.B.,
Sowizral, H., Zikan, K.: Efficient collision
detection using bounding volume
hierarchies of k-DOPs. IEEE Trans. Vis.
Comput. Graph. 4(1), 21–36 (1998)

19. Liu, B., Wei, L.Y., Xu, Y.Q.: Multi-layer
depth peeling via fragment sort. Tech. Rep.
MSR-TR-2006-81, Microsoft Research
Asia (2006)

20. Mezger, J., Kimmerle, S., Etzmuss, O.:
Hierarchical techniques in collision
detection for cloth animation. J. Winter
School Comput. Graph. 11(2), 322–329
(2003)

21. Myers, K., Bavoil, L.: Stencil routed
A-buffer. In: SIGGRAPH ’07: ACM
SIGGRAPH 2007 Sketches, p. 21. ACM,
New York, NY (2007)

22. Myszkowski, K., Okunev, O.G.,
Kunii, T.L.: Fast collision detection
between computer solids using rasterizing
graphics hardware. Visual Comput. 11(9),
497–511 (1995)

23. Palmer, I., Grimsdale, R.: Collision
detection for animation using sphere-trees.
Comput. Graph. Forum 14(2), 105–116
(1995)

24. Shinya, M., Forgue, M.: Interference
detection through rasterization. J. Vis.

Comput. Animation 2(4), 131–134
(1991)

25. Teschner, M., Heidelberger, B.,
Mueller, M., Pomeranets, D., Gross, M.:
Optimized spatial hashing for collision
detection of deformable objects. In: Ertl, T.
(ed.) VMV ’03: Proc. of the 2003 Vision,
Modeling, and Visualization Conference,
pp. 47–54. München (2003)

26. Van den Bergen, G.: Efficient collision
detection of complex deformable models
using aabb trees. J. Graph. Tools 2(4), 1–13
(1997)

27. Vassilev, T., Spanlang, B., Chrysanthou, Y.:
Fast cloth animation on walking avatars.
Comput. Graph. Forum 20(3), 260–267
(2001)

28. Zachmann, G., Felger, W.: The boxtree:
Enabling realtime and exact collision
detection of arbitrary polyhedra. In: Proc.
of Workshop on Simulation and Interaction
in Virtual Environments 1995, pp. 104–113
(1995)

29. Zhang, X., Kim, Y.: Interactive collision
detection for deformable models using
streaming aabbs. IEEE Trans. Vis. Comput.
Graph. 13(2), 318–329 (2007)

HANYOUNG JANG is a Ph.D. student at Korea
University. He received both his M.S. and B.S.
degrees in the College of Information and Com-
munications at Korea University. Since 2005,
he has been working in the fields of collision
detection and accessibility analysis for robotics.
Currently, his primary research interest lies in
real-time physics simulation.

JUNGHYUN HAN is an associate professor in
the Department of Computer Science and Engin-
eering at Korea University, where he directs the
Interactive 3D Media Laboratory and Game Re-
search Center supported by the Korea Ministry
of Culture, Sports, and Tourism. Prior to joining
Korea University, he worked at the School of
Information and Communications Engineering
of Sungkyunkwan University, in Korea, and at
the Manufacturing Systems Integration Division
of the US Department of Commerce National
Institute of Standards and Technology (NIST).
Dr. Han is currently serving as the project
manager of the digital content area in Korea
Ministry of Information and Communication.
He received a B.S. degree in Computer Engin-
eering at Seoul National University, an M.S.
degree in Computer Science at the University
of Cincinnati, and a Ph.D. degree in Computer
Science at USC. His research interests include
real-time simulation and animation for games.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

